Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis

نویسندگان

  • Vijayalakshmi Kandasamy
  • Jianming Liu
  • Shruti Harnal Dantoft
  • Christian Solem
  • Peter Ruhdal Jensen
چکیده

The potential that lies in harnessing the chemical synthesis capabilities inherent in living organisms is immense. Here we demonstrate how the biosynthetic machinery of Lactococcus lactis, can be diverted to make (3R)-acetoin and the derived 2,3-butanediol isomers meso-(2,3)-butanediol (m-BDO) and (2R,3R)-butanediol (R-BDO). Efficient production of (3R)-acetoin was accomplished using a strain where the competing lactate, acetate and ethanol forming pathways had been blocked. By introducing different alcohol dehydrogenases into this strain, either EcBDH from Enterobacter cloacae or SadB from Achromobacter xylosooxidans, it was possible to achieve high-yield production of m-BDO or R-BDO respectively. To achieve biosustainable production of these chemicals from dairy waste, we transformed the above strains with the lactose plasmid pLP712. This enabled efficient production of (3R)-acetoin, m-BDO and R-BDO from processed whey waste, with titers of 27, 51, and 32 g/L respectively. The corresponding yields obtained were 0.42, 0.47 and 0.40 g/g lactose, which is 82%, 89%, and 76% of maximum theoretical yield respectively. These results clearly demonstrate that L. lactis is an excellent choice as a cell factory for transforming lactose containing dairy waste into value added chemicals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of 2,3-Butanediol Dehydrogenases from Lactococcus lactis subsp. lactis in Relation to Citrate Fermentation.

Two 2,3-butanediol dehydrogenases (enzymes 1 and 2; molecular weight of each, 170,000) have been partially purified from Lactococcus lactis subsp. lactis (Streptococcus diacetylactis) D10 and shown to have reductase activity with either diacetyl or acetoin as the substrate. However, the reductase activity with 10 mM diacetyl was far greater for both enzymes (7.0- and 4.7-fold for enzymes 1 and ...

متن کامل

Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase

Acetoin is widely used in food and cosmetic industry as taste and fragrance enhancer. For acetoin production in this study, Saccharomyces cerevisiae JHY605 was used as a host strain, where the production of ethanol and glycerol was largely eliminated by deleting five alcohol dehydrogenase genes (ADH1, ADH2, ADH3, ADH4, and ADH5) and two glycerol 3-phosphate dehydrogenase genes (GPD1 and GPD2). ...

متن کامل

Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis.

The alpha-acetolactate decarboxylase gene aldB is clustered with the genes for the branched-chain amino acids (BCAA) in Lactococcus lactis subsp. lactis. It can be transcribed with BCAA genes under isoleucine regulation or independently of BCAA synthesis under the control of its own promoter. The product of aldB is responsible for leucine sensibility under valine starvation. In the presence of ...

متن کامل

Mechanism of 2,3-butanediol stereoisomers formation in a newly isolated Serratia sp. T241

Serratia sp. T241, a newly isolated xylose-utilizing strain, produced three 2,3-butanediol (2,3-BD) stereoisomers. In this study, three 2,3-butanediol dehydrogenases (BDH1-3) and one glycerol dehydrogenase (GDH) involved in 2,3-BD isomers formation by Serratia sp. T241 were identified. In vitro conversion showed BDH1 and BDH2 could catalyzed (3S)-acetoin and (3R)-acetoin into (2S,3S)-2,3-BD and...

متن کامل

Engineering Corynebacterium glutamicum for the production of 2,3-butanediol

BACKGROUND 2,3-Butanediol is an important bulk chemical with a wide range of applications. In bacteria, this metabolite is synthesised from pyruvate via a three-step pathway involving α-acetolactate synthase, α-acetolactate decarboxylase and 2,3-butanediol dehydrogenase. Thus far, the best producers of 2,3-butanediol are pathogenic strains, hence, the development of more suitable organisms for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016